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Statement of critical regional or State water problems 
 
Wellhead protection is a federal program (Safe Drinking Water Act Amendments, June 
1986) mandated to protect drinking water wells from contamination. Unfortunately, many 
municipal wellfields (e.g. South Tucson) are in close proximity to groundwater 
contamination sites.Pumping of these wells produces capture zones which often draw 
contamination into the water supply (EPA survey of 466 randomly selected wells found 
28.0 percent of the large systems contained at least one volatile organic compound, 
Westrick et al., 1984). Ideally, decision-makers would like to identify pumping rates that 
satisfy water demands without compromising water quality. Since increasing pumping 
rates increases the size of the capture zone areas, the objectives of maximizing supply 
while minimizing public health risk often conflict. Hence, a formal method of quantifying 



the interaction between these two objectives is critical so that decision-makers can 
identify pumping polices that best serve the public interest.  
 
The Artificial Neural Network (ANN) methodology [Skapura, 1996] developed in this 
research will be applied as an example to the Parkway Wellfield, which supplies Toms 
River, New Jersey with 30 percent of its drinking water. Different wells in the wellfield 
have exhibited differing degrees of contamination from a neighboring Superfund site. 
Both historical water quality data and numerical simulation have shown that pumping 
rates and variable climatic conditions, such as dry summers (lower groundwater 
recharge), affect the risk of contamination. Accordingly, the New Jersey Department of 
Environmental Protection would like identification of pumping strategies that 
appropriately balance water supply with public health objectives in real-time. This 
particular test case was selected because data, models, and cooperation are available. The 
same methodology can be applied without modification to any groundwater system that 
supplies drinking water, including the Tucson area.  
 
Statement of results or benefits 
 
The benefits will be the development and application of a methodology for effectively 
balancing groundwater supply with public health risk, a multiobjective goal traditionally 
fraught with difficulties. The common approach of conducting trial and error simulations 
with a numerical model does not ensure identification of even “good” solutions, and is 
limited by the number of trials attempted by the modeler. More sophisticated approaches 
that utilize nonlinear or dynamic programming require sophisticated algorithms that often 
demand significant computational capabilities. The ANN methodology significantly 
reduces the computational demands of conventional nonlinear groundwater optimization 
approaches. Although not the focus of this research, the ANN could also be trained using 
actual field data, precluding the need for a groundwater model, which could significantly 
increase the accuracy of optimization results, since the accuracy of groundwater models 
is limited by data availability and model conceptualization.  
 
Specifically, the ANN methodology will quantify impacts that different pumping policies 
at the Parkway Wellfield have on groundwater flow direction (surrogate to potential 
health risk) and supply objectives. This multiobjective methodology will facilitate a risk 
analysis and enable decision-makers to effectively trade-off short-term benefits with 
long-term consequences in real-time. In addition, a long-term risk management analysis 
can be performed to identify effective strategies for managing worst case scenarios, 
before they occur. For example, it may be found that the projected well replacement costs 
(estimated at $1,000,000 per well) are compensated by significant long-term reductions 
in risk. In short, this methodology will provide a rigorous and objective assessment of 
how different wellfield policies balance water supply with public health concerns under 
both short and long-term scenarios.  
 
 
 
 



Nature, scope, and objectives of the research 
 
The nature of this research is to develop an ANN methodology that can be used to both 
accurately estimate the dynamics of a groundwater flow system at points of interest, and 
effectively balance supply with public health objectives for public supply wellfields.  
 
The scope consists of methodology development using a hypothetical case, and then its 
application to a complex, real world scenario (Parkway Wellfield). Methodology 
development required simulating groundwater flow dynamics for the hypothetical case 
with MODFLOW, the USGS numerical groundwater flow code. Simulation output data 
was used to develop and train a backpropagation ANN capable of estimating to a high 
degree of accuracy groundwater dynamics. The ANN architecture was programmed into 
Fortran, tested for accuracy, and coupled with a non-linear optimization algorithm to 
determine the Pareto frontier (non-dominated solutions) for the multi-objective problem. 
The methodology will then be applied to the Parkway Wellfield in order to test its 
applicability to complex, real-world problems. In this test application, a sensitivity 
analysis that considers the effects of variable climatic conditions (i.e. groundwater 
recharge) on the solution sets will also be conducted.  
 
The objective of this research is to develop the ANN methodology at field scale and 
demonstrate its effectiveness in managing a real world public supply wellfield. Both 
different time-scales and measures of risk will be considered, and a comparison in 
solutions obtained from non-linear and genetic algorithms [McKinney, et al] will be 
conducted.  
 
Methods, procedures, and facilities: 
 
In order to develop the methodology, a hypothetical, heterogeneous, unconfined aquifer 
with three pumping wells was modeled with MODFLOW. Three hydraulic control pairs, 
each consisting of an upgradient and immediately downgradient node location, were 
selected to monitor the hydraulic gradient along a 3,000-foot boundary in the middle of 
the model domain. In this hypothetical case, it was assumed that a reversal of the 
hydraulic gradient along this boundary due to heavy pumping posed risk to the supply 
wells. 
 
In order to generate data for the ANN, a continuous time-sequence of variable pumping 
and recharge rates was introduced into the groundwater flow model at monthly time-
steps. Forty-nine years of monthly groundwater recharge data for the Toms River basin 
was provided by the New Jersey Geological Survey. From this data, five yearly 
sequences of recharge data representing both the extreme and mean recharge conditions 
for the basin were culled out. This data was combined with 512 different pumping 
patterns for the wells; each well was simulated to pump from 125 gallons per minute 
(gpm) up to 1,000 gpm, with 125 gpm increments. Combining the 60 months of recharge 
data with 512 pumping patterns produced 30,720 unique combinations, each of which 
constituted a single unique monthly stress period in the model. During simulation, the 



groundwater heads at the end of each stress period at all node locations in the model were 
saved.  
 
The resulting groundwater simulation data was split in two data sets; the first was used 
for training the networks and the second for validating the networks. A separate ANN 
was trained for each month. The purpose of the ANN is to obtain, for each month, a 
function that accurately estimates groundwater heads at the end of the month, given heads 
at the beginning of the month, as well as the monthly pumping and recharge rates. In this 
case, the ANN architecture utilized eighteen inputs, consisting of groundwater elevations 
at fourteen locations in the flow model at the beginning of the stress period, pumping 
rates of the three wells, and recharge over the stress period. The desired output was 
groundwater elevations at the fourteen locations at the end of the stress period. Six of the 
head locations correspond to the hydraulic control pairs used to assess risk by the value 
of the head differences. The accuracy of the 12 monthly ANN’s were validated, and the 
root mean square errors (difference between the network estimated head values and 
MODFLOW values) were all less than one percent (0.78 percent on average for the 12 
monthly networks) 
 
Following validation of the individual networks, their functional forms were linked 
together (programmed in Fortran) so that the evolution of the head field over any 
planning horizon of interest could be simulated. The MODFLOW data was then 
sequentially processed through the linked ANN functions. That is, for a given year, the 
initial heads in January and the pumping and recharge rates for that month were 
processed through the January function to produce final head values at the fourteen 
locations. These estimated final head values were inputted into the February ANN 
function, along with the pumping rates and recharge over this month, to estimate heads at 
the end of the month. This was repeated for the remaining ten months. The average head 
values estimated by the ANN functions for all months at the fourteen locations were 
compared with the MODFLOW generated values. Of the 168 head values, 71% estimated 
by the ANN functions matched exactly with the MODFLOW values (recorded to the 
nearest tenth foot), and the remaining 29% differed by only 0.1 feet (head elevations 
ranged from about 80 to 120 feet mean sea level). Further, it was found that the functions 
could accurately estimate, on average, within 0.04 feet (absolute value of the error), the 
head difference between the hydraulic control pairs. Given this degree of accuracy, the 
ANN functions correctly predicted over 96 percent of the time whether a reversal in the 
hydraulic gradient between the upgradient and downgradient nodes had (risk) or had not 
(no risk) occurred.     
 
A nonlinear optimization algorithm was programmed and linked with the ANN functions 
so that optimal pumping rates could be determined for different trade-offs. In this case, a 
one-year planning horizon was used, with the dual objectives to minimize supply deficit 
and minimize risk. Deficit was measured as the difference between some desired annual 
water supply and the total amount of water pumped out by the three wells over the 12-
month period. Risk was measured as the total sum of the head differences between the 
downgradient and upgradient (under non-pumping conditions) nodes at the three 
hydraulic control pair locations. Positive values indicate some risk since “upgradient” 



nodes would overall have a lower groundwater elevation than the “downgradient” nodes, 
resulting in a general gradient reversal. Since the two objectives measure different 
physical quantities (gallons per minute versus feet), they were normalized so that they 
could be compared. The objective function to minimize, its individual components, and 
normalization forms are: 
 
Minimize [α * Risk Normed + (1 - α) * Deficit Normed]  
             
                                     1 ≥ α ≥ 0  

                           Risk = {(h6 – h5) + (h8 – h7) + (h10 – h9)}  

                          Deficit = 36,000 - Pj          

         Risk Normed = [(Risk - MinRisk)/(MaxRisk - MinRisk)] 

       Deficit Normed = [(Deficit-MinDefict)/(MaxDeficit-MinDeficit)] 

Variables h6 through h10 are the head values at the three hydraulic control risk pairs (6 
nodes), with the index i corresponding to months 1 through 12. There are 36 decision 
variables, designated Pj, corresponding to the monthly pumping rates for each of the three 
wells (e.g. P4 is the monthly pumping rate of well 3 in February).  
 
In the objective function to be minimized, a α value of 1 considers only risk, a value of 0 
only deficit, and values between some tradeoff between risk and deficit. For example, a α 
value of 0.5 treats weights both objectives equally. By selecting different α values, the 
Pareto frontier or set of non-dominated solutions was identified.  
 
The generated Pareto frontier conforms to intuition. Since well 3 is furthest from the 
boundary and has the least impact on risk, this well will pump at an earlier month than 
the other wells when risk is weighted relatively high. Correspondingly, well 2, located 
closest to the boundary, will be the last to pump. As supply is weighted higher, wells 1 
and 2 will pump earlier in the year.  
 
Now that the methodology has been developed using a hypothetical case, the following 
tasks must be completed.  

a) Apply the methodology to the Toms River test case.  
b) Consider longer time periods, and evaluate how one year might effect 
the next year.  
c) Consider other measures of risk. For example, instead of considering 
the cumulative risk presented above, an alternative measure would be 



worst case risk (largest gradient reversal in any single month) or the 
number of gradient reversal that occur over the planning horizon.  
d) Incorporate risk constraints directly into the optimization formulation.  
e) Perform a sensitivity analysis on climate variability (extreme recharge 
conditions).  
f) Use a genetic algorithm for obtaining optimal pumping rates and 
compare results with those obtained using the nonlinear algorithm.  

The Toms River study area has been modeled by the New Jersey Geological Survey 
using MODFLOW. The model domain has been discretized into 8 layers, each consisting 
of 63 columns and 81 rows. This model will be run with various combinations of monthly 
pumping and recharge rates. Different network architectures (i.e. number and location of 
selected head values) will be tried until an acceptable level of accuracy is achieved. 
Following this, the multiobjective optimization will be conducted, and the results verified 
by simulation in the groundwater model.  
 
Because of the size of this model, it will be run on the University of Arizona’s 
supercomputer. Much of the work will be conducted utilizing the Department of 
Hydrology and Water Resources computer facilities, as well as Emery Coppola’s 
personal computer.  
 
Related Research  
 
Linear programming was first used to optimize water supply and remediation problems 
[Atwood and Gorelick, 1985]. This approach is limited by linear objective functions and 
constraints and its application to steady-state conditions (time-varying solutions are not 
found). In order to consider non-linear transient conditions, non-linear programming has 
been used [Gorelick, et al, 1984]. Because of the computational demands associated with 
linking the nonlinear program with the simulation model, others have applied control 
theory algorithms, such as differential dynamic programming [Jones et al, 1987; Culver 
and Shoemaker, 1993]. Although these methods are less computationally demanding than 
conventional nonlinear approaches, they require sophisticated algorithms to linearize 
system dynamics and compute partial derivative terms. As a way of avoiding the 
computational demands and difficulties of non-linear programming, genetic algorithms 
have been used [McKinney and Lin, 1994; Cieniawski, et al, 1995]. This method utilizes 
a random search procedure inspired by biological evolution where only the “fittest” 
solutions survive and propagate to successive generations. Traditionally, these algorithms 
have been linked directly to a numerical flow model. An exception, and the research 
closest to this proposal, involved linking a genetic algorithm with a ANN that was trained 
to identify whether different pumping scenarios would effectively remediate 
contamination [Rogers and Dowla, 1994]. In this case, the ANN was not trained to 
estimate the dynamics of the system, but simply the success or failure of different 
pumping strategies.  
 
In the proposed research, the ANN will be trained to estimate the dynamics of the 
groundwater flow system in response to different pumping and recharge stresses. The 



proposed methodology vastly reduces computational demand of non-linear optimization 
by replacing the system of groundwater flow equations with the ANN generated 
functions. In addition, these functions provide insights into system dynamics, which helps 
in both initializing decision variable values for optimization, and verifying results.  
 
Lastly, the most significant difference between this proposed methodology, and the ones 
described above, is that this ANN approach could preclude use of a numerical model and 
be directly applied to field conditions. Numerical models are simplifications of the real 
world, and their ability to accurately simulate the real system is limited by data 
availability and complexity of the real system. In principle, an ANN could be trained to 
estimate responses in the real world at points of interest, and then used for direct 
optimization of the system. This would be a significant contribution to water resources 
management. Because of model uncertainty, many municipalities (e.g. Tucson, EPA 
Handbook, “Ground Water and Wellhead Protection”) are reluctant to delineate wellhead 
protection areas with models, and rely instead on less quantitative methods, such as a 
fixed circle radius or groundwater vulnerability mapping.  
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